MICHIGAN ASPARAGUS RESEARCH 2023

RESEARCH IS SUPPORTED BY:

Michigan Asparagus Research Committee; Michigan State University AgBioResearch; Michigan State University Extension

TABLE OF CONTENTS

Acknowledgements	3-4
Data Explainer	5-6
Hybrid Asparagus Yield Trials	7
2012 International Cultivar Trial	8-13
2015A Crown Trial	14-19
2015B Transplant Trial	20-25
2017A Cultivar Trial	.26-31
2017C Competitors Trial	.32-37
2017B Guelph Eclipse (UG-05) Plant Population Study	.39-45
2023 Weather and Climate Data	46
Asparagus Emergence Studies: Phenological Models & Indicator Plants	47-53
Irrigation & Calcium Effects on Asparagus Yield & Quality	55-59
Asparagus Beetle Biology & Management Update	.60-67
Research Contributors – Processors, Fresh Packers and Shippers	. 68

Intentionally Left Blank

Acknowledgements

This report contains most of the asparagus research program at Michigan State University (MSU) and the Michigan Asparagus Industry Research Farm (Research Farm). It represents a strong cooperative effort between all stakeholders working together for the betterment of Michigan's asparagus industry.

The information in this book comes from research done at the Research Farm near Hart, Michigan; trials on individual farms; and MSU trial plots. <u>New this year on page 46 is climate</u> <u>and weather data to put the trial results into perspective</u>. And for the second year, yield distribution graphs are also included for each trial.

Funds to operate the Research Farm, as well as most other asparagus research projects are generated from many sources including voluntary contributions from Michigan asparagus processors and fresh packers, MSU Project GREEEN, USDA/MDARD Specialty Crop Block Grant awards and grower assessments. A funding stream also comes from profits on the sale of hybrid asparagus seed.

The Research Farm is part owned and part leased by Michigan Asparagus Research, Inc (MARI) which is made up of growers, processors and packers who meet as needed throughout the year. MARI has purchased equipment to operate the Research Farm, installed a well and funds the daily operation of the farm during asparagus season in cooperation with MSU. We wish to express our sincere appreciation to the farm manager, Ashley Fleser, assistant farm manager, Justin Adams and the 2023 Board:

Nick Oomen, Chairman	Brock Oomen, Vice Chairman
Gerrit Herrygers, Treasurer	Todd Greiner
Alex Arellano	Jordon Walsworth
Glenn Rogers	Tim Tubbs
Ben Werling, ex-officio (MSUE)	Ashley Fleser, ex-officio (Farm Manager)
Jamie Clover Adams, ex-officio (Secretary)	

We also receive guidance and input on the industry's research efforts from the Michigan Asparagus Industry Research Farm Advisory Committee. A special thanks goes to Committee members:

Kevin Burmeister (Shelby) Ben Byl (Shelby) Matt Woller (Montague) Ben Werling, ex-officio (MSUE) – Secretary Ashley Fleser, ex-officio (Farm Manager) Eugene Kokx, Jr. (Hart) Nick Oomen (Hart) Paul Lound (Industry Rep.) Jamie Clover Adams, ex-officio (MAAB)

Thank you!

The Michigan Asparagus Research, Inc (MARI) wishes to thank the following processors, fresh packers and shippers whose \$3 per ton contribution helps fund asparagus research.

Honee Bear Canning	Michigan Freeze Pack
North Bay Produce	Richter Farms
Ridgeview Packing	Shafer Lake Fruit
Todd Greiner Farms Packing	West MI Produce

A strong research effort benefits all involved in the industry. The MARI Board asks you, as growers, to thank those processors, fresh packers and shippers that contribute to our research effort and to encourage those not listed to contribute in the future.

This annual publication is funded by grower check-off dollars collected by the Michigan Asparagus Advisory Board and granted to MARI and through voluntary contributions made by Michigan processors, fresh packers and shippers.

Questions can be directed to:

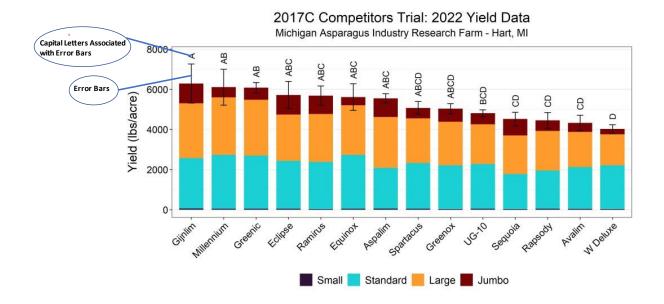
Jamie Clover Adams, Executive Director jamie@michiganasparagus.org (517) 881-3971

About the Graphs & Data Tables

The graphs and data tables in this year's asparagus research book were generated from data collected by the Christiaens automated asparagus sorter. You'll recall that the research farm received a Rural Development Fund grant in 2019 to purchase this machine. It is designed specifically for research and data collection. It examines every spear harvested and measures the weight, diameter, and tip quality. This has enabled us to provide more data for you as you assess asparagus varieties for your farm.

For the second year, we are including several yield distribution charts. In addition, the traditional charts and tables have some new features. They include:

Error Bars. These are skinny lines extending from the top of bars in the charts. They are a graphical representation of the variability of the data. The error bars represent +/- one standard error unit around the mean (average). The standard error measures the variability in the data for a treatment. In other words, how different from each other were the four replicate measurements (plots) in the field for each treatment?


Capital Letters Associated with Error Bars. Some of the charts representing annual and cumulative data have capital letters associated with each error bar. The letters tell you whether we would judge treatments as different from each other at the 0.05 probability level (see below). Different chart bars that share the same letter are not statistically different. Those that do not share any of the same letters are significantly different. If there are no letters, there were no significant differences among any of the treatments.

P-Values. These are found at the bottom of most of the data tables. In a basic sense, P-values represent the level of statistical significance. If the p-value is less than 0.05, we can interpret it to mean there is a 95% chance there are some real differences among the treatments. The lower the p-value, the more confident we are that there are real differences. The higher the p-value (especially greater than 0.10), the more confident we are in saying there probably aren't meaningful differences between the treatments.

LSD.05 Values. These are found at the bottom of most of the data tables. This is the "Least Significant Difference" determined at the 0.05 probability level. If two treatment means differ by more than this number, they would be considered significantly different. If they differ by less than this number, they are not considered significantly different. **Bolding is used in the tables to highlight treatments not significantly different from the highest value**, but the LSD can be used to compare any other treatments you may be interested in.

Questions can be directed to:

Zack Hayden, MSU Department of Horticulture haydenza@msu.edu (517) 353-0410

		2015A	Crown Tr	ial: 2022	Yield Da	ta					
	Michigan Asparagus Industry Research Farm - Hart, MI										
Varie	***	Mean Yiel	ds in Ibs.	peracre		Spear Tip (Quality				
Varie	small	Standard	Large	Ju mbo	Total	Avg Flowering ¹	Invalid ²				
WB-206	19	2529	3391	927	6867	28%	5%				
Millenniu	m 14	1864	2969	1842	6689	30%	7%				
Rosalie	18	1765	2627	1736	6146	29%	596				
P Challen	ger-2 33	2352	2817	792	5994	30%	5%				
UG-24	20	1726	2587	1530	5863	29%	5%				
WB-203	17	1892	2397	1547	5854	28%	6%				
WB-201	18	2069	2496	1172	5755	30%	5%				
Voltare	22	1997	2576	911	5506	29%	5%				
UG-25	18	1783	2532	955	5288	29%	6%				
p Value	0.8245	0.2318	0.1489	0.2394	0.2730	0.7383	0.8502				
LSD.05	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.				

Quantities not significantly different from the maximum in each column shown in

¹ Measured as mean of flowering percentage of individual spears.

 $^{\rm 2}$ Measured as percentage of individual spears with invalid flowering readings.

Hybrid Asparagus Yield Trials 2023 Results

Objectives:

To evaluate the yield, quality, disease resistance, and longevity of selected asparagus hybrids.

Methods:

The trials established during 2012, 2015 (Transplants) and 2017 (Cultivar & Competitor) consisted of transplants which were sown in the greenhouse in April and transplanted into the trial plots during June or early July.

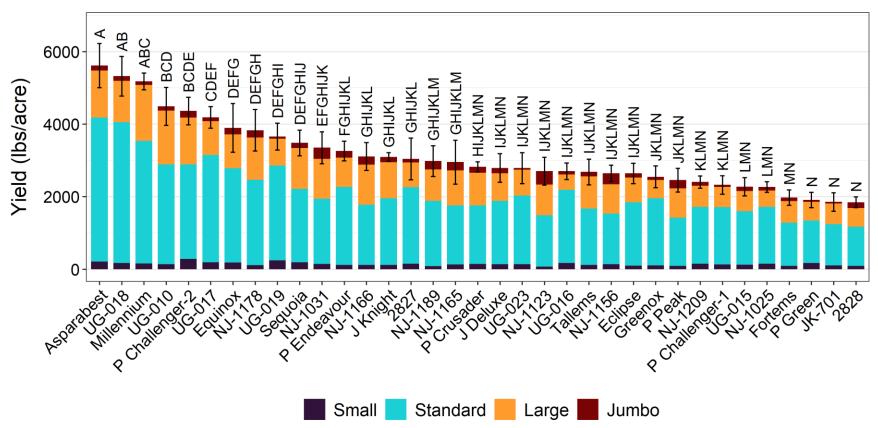
The in-row plant spacing for each trial was:

- 2012 International 12"
- 2015 Transplant 12"
- 2017 Cultivar 12"
- 2017 Competitors 9"

The 2015 Crown trial was planted in early May with 1 year old crowns with in-row spacing of 9.4". apart. The row spacing for all trials is 54".

All trials were planted in a randomized, complete block design with 4 replications except for 2017 Cultivar which has 3 replications. Plots are harvested for 3-4 weeks during the third growing season and around 6 weeks in subsequent seasons. Beginning in the Spring of 2020 the weight, diameter, and length of each spear harvested was measured and recorded using an automated data collection system. In addition, quality measures to assess tip quality were collected from each spear harvested.

Results:


• Guelph Millennium is used as an industry standard or "control" in all variety trials. It continued to match or exceed annual and cumulative yields of alternative varieties during the 2023 season.

2012 International Cultivar Trial: 2023 Yield Data								
	Michiga	n Asparagus	s Industr	y Researd	ch Farm	- Hart, MI		
Variaty		Mean Yie	lds in lb	s./acre		Spear Tip Q	uality	
Variety	Small	Standard	Large	Jumbo	Total	Avg Flowering ¹	Invalid ²	
Asparabest	208	3971	1300	137	5616	25%	23%	
UG-018	171	3883	1138	133	5324	24%	21%	
Millennium	159	3381	1542	95	5177	26%	20%	
UG-010	135	2755	1479	121	4490	26%	23%	
P Challenger-2	279	2613	1286	186	4363	23%	22%	
UG-017	190	2958	930	107	4185	24%	21%	
Equinox	185	2597	935	180	3896	26%	20%	
NJ-1178	114	2350	1170	198	3832	26%	20%	
UG-019	242	2618	741	55	3656	26%	26%	
Sequoia	189	2025	1123	146	3483	24%	23%	
NJ-1031	144	1798	1101	309	3352	25%	24%	
P Endeavour	114	2153	805	186	3258	24%	21%	
NJ-1166	115	1664	1104	225	3108	23%	21%	
J Knight	119	1836	994	148	3097	26%	24%	
2827	149	2112	682	98	3042	23%	23%	
NJ-1189	81	1803	864	232	2980	25%	22%	
NJ-1165	131	1625	965	232	2953	26%	24%	
P Crusader	142	1619	896	164	2820	23%	21%	
J Deluxe	140	1743	761	150	2793	26%	27%	
UG-023	134	1895	714	47	2790	26%	21%	
NJ-1123	71	1417	845	370	2703	23%	22%	
UG-016	167	2020	425	89	2702	23%	26%	
Tallems	118	1557	885	123	2683	25%	21%	
NJ-1156	137	1396	808	303	2645	25%	23%	
Eclipse	98	1745	683	117	2642	26%	21%	
Greenox	104	1853	500	90	2547	23%	23%	
P Peak	90	1328	808	232	2457	23%	21%	
NJ-1209	152	1567	580	104	2404	23%	26%	
P Challenger-1	129	1582	559	53	2324	23%	27%	
UG-015	126	1470	561	118	2275	23%	23%	
NJ-1025	149	1567	453	101	2269	27%	27%	
Fortems	93	1186	599	97	1976	24%	21%	
P Green	171	1171	518	51	1911	26%	25%	
JK-701	102	1143	564	47	1856	24%	22%	
2828	92	1080	513	160	1846	24%	18%	
p Value	< 0.0001	L < 0.0001	< 0.0001	L 0.1219 ·	< 0.0001	0.7326	0.0911	
LSD.05	77	772	494	n.s.	1069	n.s.	n.s.	

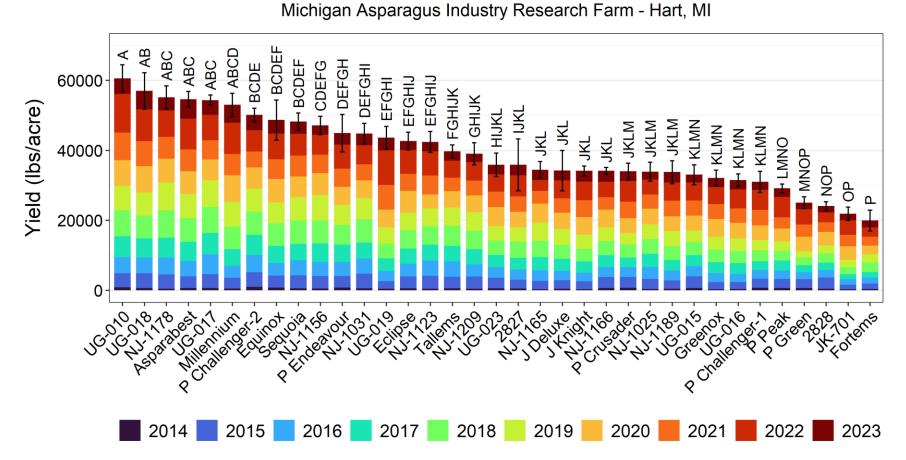
Quantities not significantly different from the maximum in each column shown in bold.

¹ Measured as mean of flowering percentage of individual spears.

² Measured as percentage of individual spears with invalid flowering readings.

2012 International Cultivar Trial: 2023 Yield Data

2012 International Cultivar Trial: 2023 Yield Distribution



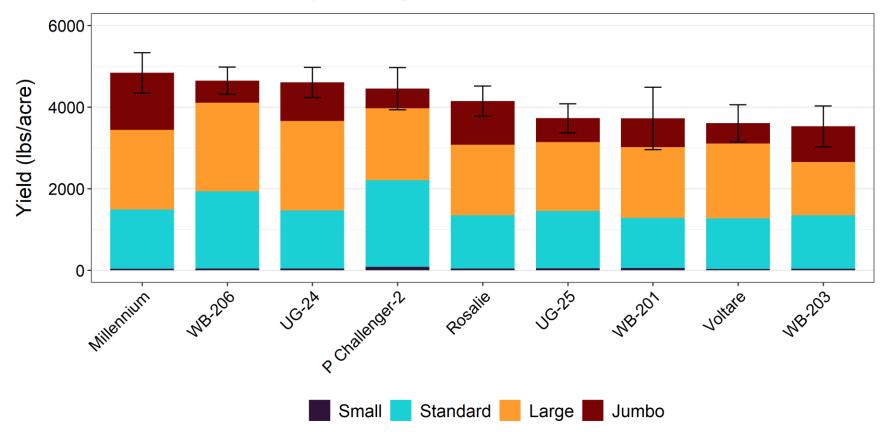
Intentionally Left Blank

2012 International Cultivar Trial: 2023 Cumulative Yields											
		Mich	igan Asp	aragus In	dustry Re	esearch Fa	arm - Har	t, MI			
Variety –					Mean Yi	elds in lb	s./acre				
variety –	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	Total
UG-010	799	4024	4641	5921	7472	6963	7375	7866	11037	4490	60586
UG-018	588	4254	4495	5477	6451	6655	7516	7139	9124	5324	57023
NJ-1178	376	4127	4831	5704	7761	7974	6791	6239	7542	3832	55178
Asparabest	612	3375	4350	5519	6762	6868	6527	6259	8743	5616	54631
UG-017	616	3939	5628	6184	7440	7623	5915	5549	7276	4185	54355
Millennium	442	3118	3411	4717	6466	7072	7587	6128	8914	5177	53033
P Challenger-2	945	4147	4993	5748	6682	6545	6085	4463	6141	4363	50112
Equinox	738	3447	3525	4995	6337	6066	6731	5639	7300	3896	48676
Sequoia	502	3738	4346	4669	6688	6683	5902	5932	6260	3483	48203
NJ-1156	435	3579	3988	5382	6580	7276	6249	5240	5732	2645	47106
P Endeavour	758	3251	4046	4965	5616	5743	5170	5221	6878	3258	44905
NJ-1031	507	4217	4333	4573	6648	6046	5056	4633	5427	3352	44792
UG-019	391	2161	2916	3628	4216	4654	5097	7067	9847	3656	43632
Eclipse	514	3347	3662	4406	5233	5014	6219	4844	6782	2642	42665
NJ-1123	401	3723	4370	4512	5318	5060	3999	5404	6925	2703	42417
Tallems	549	3249	4416	4483	5690	5294	4627	3878	4866	2683	39734
NJ-1209	414	3464	3543	4305	5256	5323	4767	4256	5275	2404	39007
UG-023	526	3029	2993	3550	4139	4079	5473	4387	4929	2790	35893
2827	460	2526	2901	3381	4601	4082	4451	4395	6027	3042	35866
NJ-1165	270	2351	3055	3746	4723	5167	5462	3648	3085	2953	34460
J Deluxe	377	2484	2709	3393	3996	4522	4669	4144	5123	2793	34209
J Knight	243	2261	2514	3192	3644	4048	5030	4770	5341	3097	34139
NJ-1166	580	3166	2851	3386	4050	3946	5077	3546	4408	3108	34117
P Crusader	679	3074	2826	2726	3778	3238	4230	4721	5901	2820	33991
NJ-1025	336	2854	3425	3807	4179	4255	4475	4003	4304	2269	33909
NJ-1189	365	2424	2898	2949	3999	4282	4180	4472	5227	2980	33777
UG-015	596	3354	2897	3151	3778	3318	4243	4290	5133	2275	33035
Greenox	280	2011	2584	3129	3671	3696	4990	4280	4877	2547	32065
UG-016	300	2019	2296	3096	3454	3645	4477	4095	5408	2702	31491
P Challenger-1	675	2571	2525	2508	3074	2946	4210	4438	5723	2324	30994
P Peak	574	2612	2441	2842	2764	2774	3620	3226	5825	2457	29135
P Green	628	2492	1981	1991	2194	1849	4143	3507	4360	1911	25056
2828	407	3227	2106	2095	2675	2265	3848	2747	2847	1846	24065
JK-701	270	1295	1549	1451	2007	2135	3800	3290	4192	1856	21843
Fortems	299	1629	1709	1539	2791	2286	2500	2556	2653	1976	19937
p Value	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
LSD.05	245	1009	964	1056	1315	1344	1512	1889	2713	1069	9286

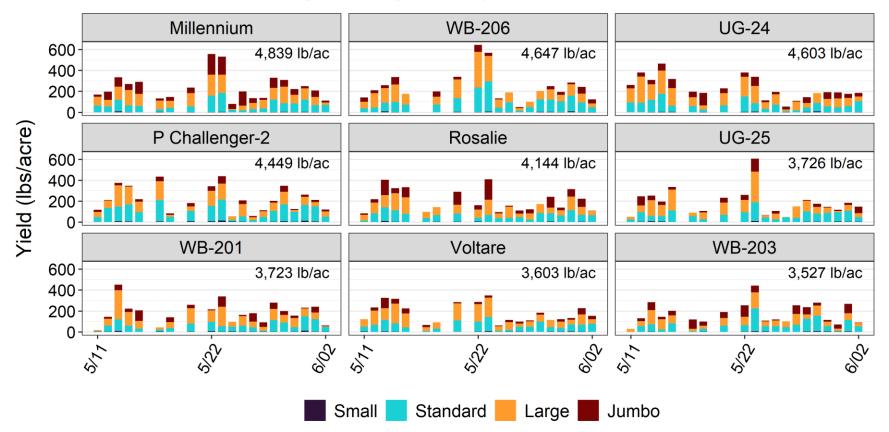
al Cultivar Trial: 2022 Cumulative Vields 2012 Into atio

Quantities not significantly different from the maximum in each column shown in bold.

2012 International Cultivar Trial: 2023 Cumulative Yields


	2015A Crown Trial: 2023 Yield Data									
Michigan Asparagus Industry Research Farm - Hart, MI										
Variaty		Mean Yie	lds in lb	s./acre		Spear Tip Qu	ality			
Variety	Small	Standard	Large	Jumbo	Total	Avg Flowering ¹	Invalid ²			
Millennium	34	1450	1954	1402	4839	28%	19%			
WB-206	42	1891	2171	543	4647	25%	16%			
UG-24	38	1423	2195	946	4603	28%	21%			
P Challenger-2	82	2119	1768	481	4449	25%	20%			
Rosalie	39	1306	1727	1071	4144	29%	23%			
UG-25	46	1407	1683	589	3726	27%	24%			
WB-201	50	1233	1734	706	3723	27%	24%			
Voltare	28	1240	1838	496	3603	27%	21%			
WB-203	31	1312	1308	877	3527	27%	23%			
p Value	0.0207	0.1266	0.1909	0.2192	0.3799	0.3540	0.4446			
LSD.05	29	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.			

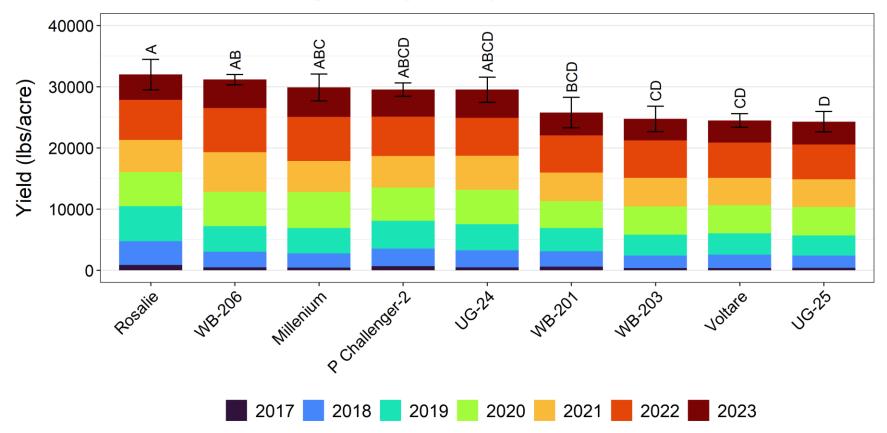
Quantities not significantly different from the maximum in each column shown in bold.


¹ Measured as mean of flowering percentage of individual spears.

² Measured as percentage of individual spears with invalid flowering readings.

2015A Crown Trial: 2023 Yield Data

2015A Crown Trial: 2023 Yield Distribution


Intentionally Left Blank

	Michigan Asparagus Industry Research Farm - Hart, MI										
Variety	Mean Yields in lbs./acre										
variety	2017	2018	2019	2020	2021	2022	2023	Total			
Rosalie	842	3891	5730	5580	5226	6553	4144	31966			
WB-206	444	2559	4210	5610	6466	7209	4647	31144			
Millenium	408	2328	4159	5884	5060	7192	4839	29871			
P Challenger-2	654	2844	4563	5445	5130	6438	4449	29523			
UG-24	474	2781	4244	5612	5584	6202	4603	29500			
WB-201	588	2503	3803	4368	4691	6079	3723	25756			
WB-203	344	2042	3396	4639	4659	6123	3527	24731			
Voltare	328	2194	3494	4595	4476	5774	3603	24464			
UG-25	396	1980	3314	4632	4516	5713	3726	24277			
p Value	0.0002	0.0006	0.0002	0.4997	0.0514	0.2218	0.3799	0.0293			
LSD.05	205	797	1189	n.s.	n.s.	n.s.	n.s.	5815			

2015A Crown Trial: 2023 Cumulative Yields Michigan Asparagus Industry Research Farm - Hart, MI

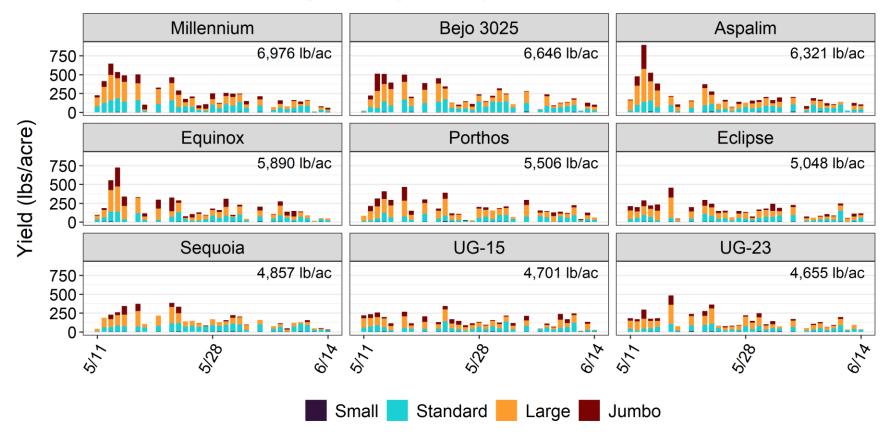
Quantities not significantly different from the maximum in each column shown in bold.

2015A Crown Trial: 2023 Cumulative Yields

Michigan Asparagus Industry Research Farm - Hart, MI										
Variety		Mean Yie	Spear Tip Qu	ality						
variety	Small	Standard	Large	Jumbo	Total	Avg Flowering ¹	Invalid ²			
Millennium	59	2375	3226	1316	6976	24%	14%			
Bejo 3025	59	2499	2988	1100	6646	25%	16%			
Aspalim	74	1923	3071	1253	6321	26%	15%			
Equinox	50	1742	2651	1446	5890	27%	12%			
Porthos	57	1535	2779	1135	5506	25%	14%			
Eclipse	58	1514	2339	1137	5048	28%	16%			
Sequoia	54	1998	2203	603	4857	27%	18%			
UG-15	38	1592	2115	955	4701	28%	16%			
UG-23	57	1408	2402	788	4655	28%	15%			
p Value	0.8813	0.0057	0.0635	0.1202	0.0055	0.0395	0.2902			
LSD.05	n.s.	637	n.s.	n.s.	1440	3	n.s.			

2015B Transplant Trial: 2023 Yield Data

Quantities not significantly different from the maximum in each column shown in bold.

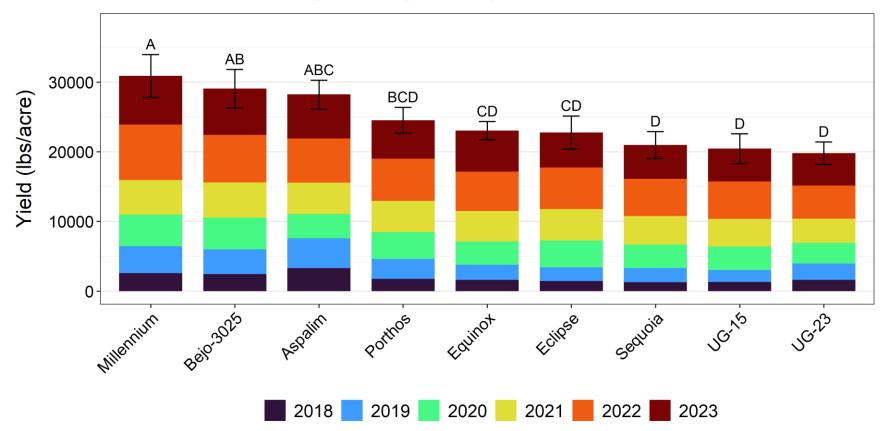

¹ Measured as mean of flowering percentage of individual spears.

² Measured as percentage of individual spears with invalid flowering readings.

8000 ABC ∢ AB ABCD BCD CO Yield (lbs/acre) 6000 **P** 4000 2000 0 Millennium Aspalin Faymot JG-15 Porthos Sequoia Ecilpse Beipanis JG:23 Standard Small Large Jumbo

2015B Transplant Trial: 2023 Yield Data

2015B Transplant Trial: 2023 Yield Distribution


Intentionally Left Blank

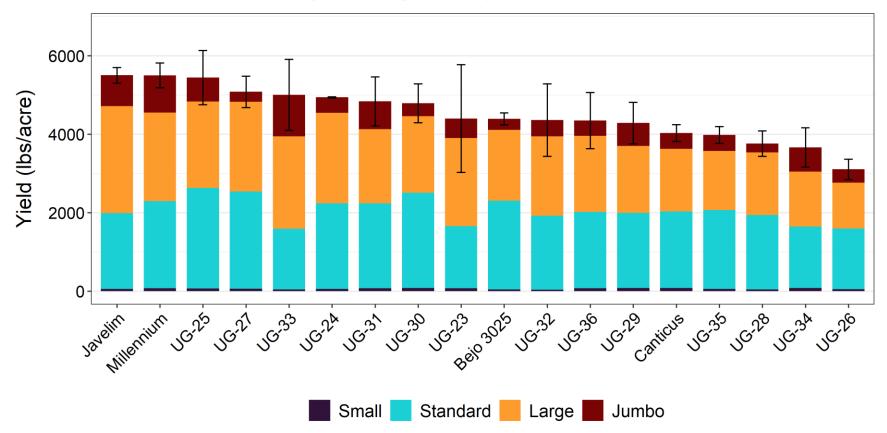
	Michigan Asparagus Industry Research Farm - Hart, MI										
Variety	Mean Yields in lbs./acre										
variety	2018	2019	2020	2021	2022	2023	Total				
Millennium	2559	3866	4557	4955	7971	6976	30884				
Bejo-3025	2436	3558	4529	5088	6825	6646	29082				
Aspalim	3297	4265	3478	4513	6354	6321	28228				
Porthos	1756	2836	3891	4467	6068	5506	24523				
Equinox	1604	2184	3319	4394	5649	5890	23039				
Eclipse	1450	1956	3867	4499	5959	5048	22778				
Sequoia	1280	2004	3376	4119	5333	4857	20968				
UG-15	1288	1718	3379	3959	5399	4701	20445				
UG-23	1624	2314	2961	3505	4743	4655	19801				
p Value	< 0.0001	0.0008	0.1377	0.6488	0.0109	0.0055	0.0029				
LSD.05	878	1352	n.s.	n.s.	1845	1440	6781				

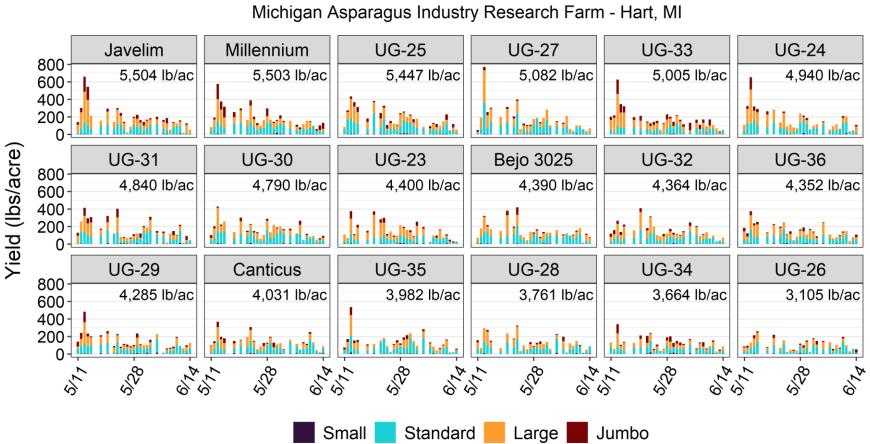
2015B Transplant Trial: 2023 Cumulative Yields Michigan Asparagus Industry Research Farm - Hart, MI

Quantities not significantly different from the maximum in each column shown in bold.

2015B Transplant Trial: 2023 Cumulative Yields

Michigan Asparagus Industry Research Farm - Hart, MI										
Cultiver		Mean Yie	Spear Tip Quality							
Cultivar	Small	Standard	Large	Jumbo	Total	Avg Flowering ¹	Invalid ²			
Javelim	55	1933	2732	785	5504	28%	13%			
Millennium	71	2224	2257	951	5503	28%	13%			
UG-25	68	2561	2201	616	5447	28%	11%			
UG-27	59	2476	2291	255	5082	28%	15%			
UG-33	43	1545	2358	1059	5005	30%	14%			
UG-24	53	2186	2307	395	4940	27%	10%			
UG-31	74	2164	1889	714	4840	26%	12%			
UG-30	78	2431	1950	332	4790	26%	15%			
UG-23	71	1585	2246	498	4400	29%	13%			
Bejo 3025	41	2262	1808	279	4390	27%	11%			
UG-32	38	1884	2027	416	4364	29%	13%			
UG-36	69	1949	1939	395	4352	30%	15%			
UG-29	77	1916	1709	584	4285	28%	12%			
Canticus	78	1950	1600	402	4031	27%	13%			
UG-35	53	2013	1504	413	3982	28%	11%			
UG-28	44	1897	1596	224	3761	28%	10%			
UG-34	77	1570	1400	617	3664	29%	16%			
UG-26	46	1550	1166	343	3105	26%	15%			
p Value	0.5622	0.1588	0.1946	0.1797	0.2063	0.8119	0.1192			
LSD.05	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.			


2017A Cultivar Trial – Transplants: 2023 Yield Data Michigan Asparagus Industry Research Farm - Hart, MI

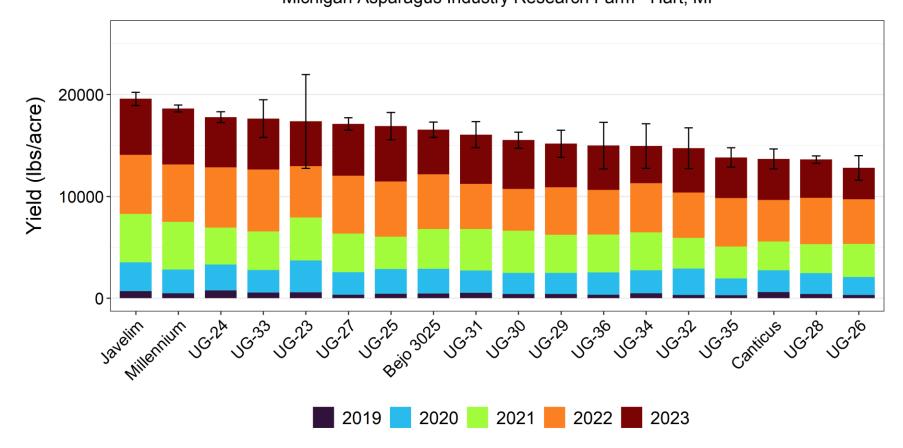

Quantities not significantly different from the maximum in each column shown in bold.

¹ Measured as mean of flowering percentage of individual spears.

² Measured as percentage of individual spears with invalid flowering readings.

2017A Cultivar Trial – Transplants: 2023 Yield Data

2017A Cultivar Trial – Transplants: 2023 Yield Distribution

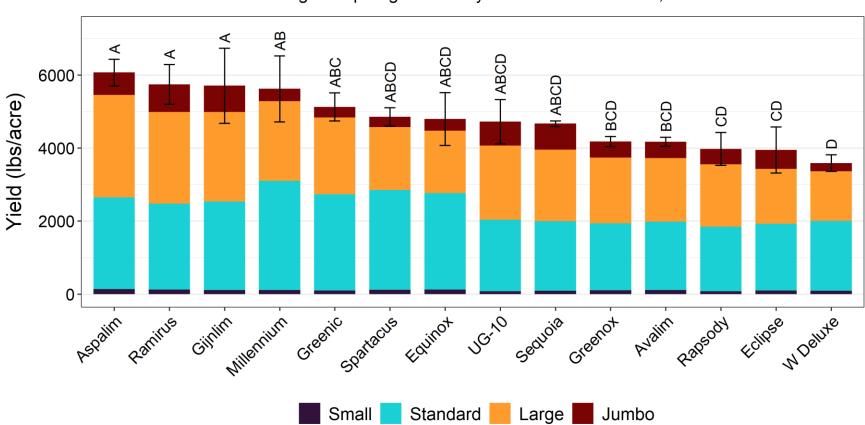

Intentionally Left Blank

	Michigan Asparagus Industry Research Farm - Hart, MI											
Cultivar		Mean Yields in lbs./acre										
Cultivar	2019	2020	2021	2022	2023	Total						
Javelim	666	2834	4758	5814	5504	19576						
Millennium	461	2346	4678	5636	5503	18624						
UG-24	750	2551	3622	5914	4940	17779						
UG-33	525	2223	3810	6069	5005	17632						
UG-23	558	3146	4221	5029	4400	17355						
UG-27	313	2219	3796	5690	5082	17100						
UG-25	416	2422	3200	5408	5447	16893						
Bejo 3025	438	2440	3914	5361	4390	16542						
UG-31	513	2186	4093	4427	4840	16058						
UG-30	390	2081	4137	4120	4790	15518						
UG-29	387	2073	3764	4659	4285	15169						
UG-36	332	2186	3715	4396	4352	14981						
UG-34	457	2263	3731	4827	3664	14942						
UG-32	297	2598	3011	4454	4364	14724						
UG-35	282	1648	3125	4774	3982	13811						
Canticus	588	2134	2830	4093	4031	13675						
UG-28	400	2052	2848	4550	3761	13611						
UG-26	299	1772	3257	4368	3105	12800						
p Value	0.0006	0.1803	0.4656	0.5280	0.2063	0.2372						
LSD.05	207	n.s.	n.s.	n.s.	n.s.	n.s.						

2017A Cultivar Trial – Transplants: 2023 Cumulative Yields Michigan Asparagus Industry Research Farm - Hart MI

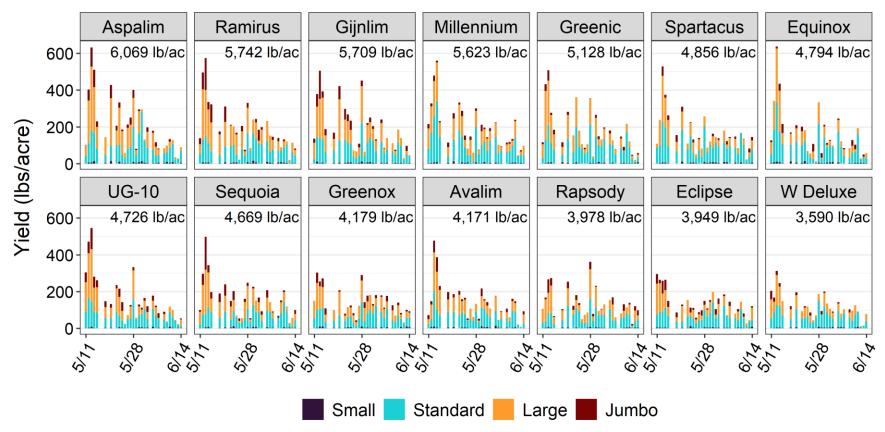
Quantities not significantly different from the maximum in each column shown in bold.

2017A Cultivar Trial – Transplants: 2023 Cumulative Yields Michigan Asparagus Industry Research Farm - Hart, MI


Michigan Asparagus Industry Research Farm - Hart, MI							
Variety	Mean Yields in lbs./acre					Spear Tip Quality	
	Small	Standard	Large	Jumbo	Total	Avg Flowering ¹	Invalid ²
Aspalim	136	2513	2804	616	6069	22%	13%
Ramirus	123	2356	2508	755	5742	20%	12%
Gijnlim	108	2430	2450	721	5709	22%	12%
Millennium	108	2989	2183	342	5623	22%	13%
Greenic	95	2641	2103	289	5128	22%	14%
Spartacus	119	2729	1727	280	4856	22%	13%
Equinox	125	2642	1705	322	4794	22%	14%
UG-10	77	1958	2031	661	4726	22%	13%
Sequoia	87	1909	1960	713	4669	23%	14%
Greenox	106	1833	1803	438	4179	21%	15%
Avalim	107	1875	1741	448	4171	23%	16%
Rapsody	79	1768	1704	426	3978	23%	11%
Eclipse	98	1827	1506	518	3949	22%	15%
W Deluxe	88	1918	1361	223	3590	22%	13%
p Value	0.4539	0.0341	0.0668	0.6632	0.0277	0.4543	0.7448
LSD.05	n.s.	842	n.s.	n.s.	1605	n.s.	n.s.

2017C Competitors Trial: 2023 Yield Data Michigan Asparagus Industry Research Farm - Hart, M

Quantities not significantly different from the maximum in each column shown in bold.

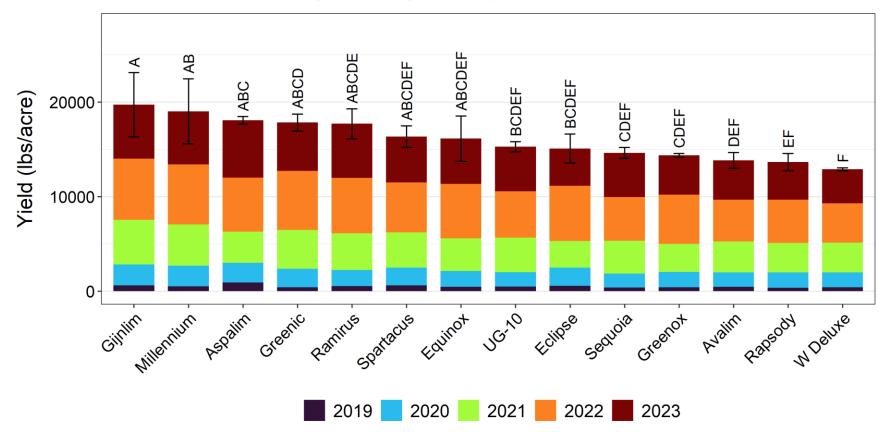

¹ Measured as mean of flowering percentage of individual spears.

² Measured as percentage of individual spears with invalid flowering readings.

2017C Competitors Trial: 2023 Yield Data

2017C Competitors Trial: 2023 Yield Distribution

Intentionally Left Blank


	Michigan Aspa	ragus Indus	try Researcl	n Farm - Ha	rt <i>,</i> MI					
Variety		Mean Yields in lbs./acre								
variety	2019	2020	2021	2022	2023	Total				
Gijnlim	604	2211	4709	6490	5709	19724				
Millennium	506	2175	4380	6334	5623	19019				
Aspalim	917	2066	3301	5713	6069	18066				
Greenic	411	1943	4104	6248	5128	17834				
Ramirus	524	1710	3881	5850	5742	17707				
Spartacus	605	1872	3726	5290	4856	16348				
Equinox	444	1692	3445	5752	4794	16128				
UG-10	473	1524	3648	4902	4726	15273				
Eclipse	554	1917	2824	5840	3949	15085				
Sequoia	368	1484	3475	4630	4669	14626				
Greenox	387	1636	2973	5193	4179	14369				
Avalim	438	1548	3268	4414	4171	13839				
Rapsody	354	1614	3132	4566	3978	13644				
W Deluxe	391	1575	3162	4169	3590	12886				
p Value	< 0.0001	0.4669	0.2038	0.0443	0.0277	0.0332				
LSD.05	206	n.s.	n.s.	1625	1605	4923				

2017C Competitors Trial: 2023 Cumulative Yields Michigan Asparagus Industry Research Farm - Hart, MI

Quantities not significantly different from the maximum in each column shown in bold.

2017C Competitors Trial: 2023 Cumulative Yields

Michigan Asparagus Industry Research Farm - Hart, MI

Intentionally Left Blank

Guelph Eclipse Plant Population Study 2023 Results

Objectives:

To evaluate the effect of planting density on yield and spear size in a planting of the asparagus variety Guelph Eclipse.

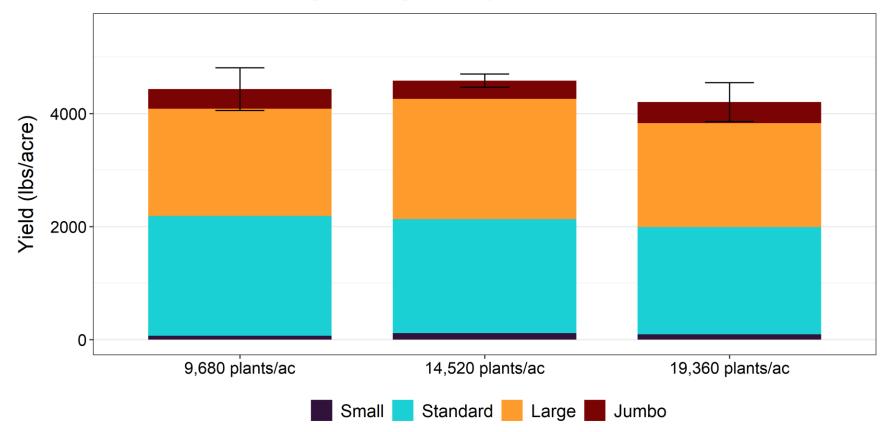
Methods:

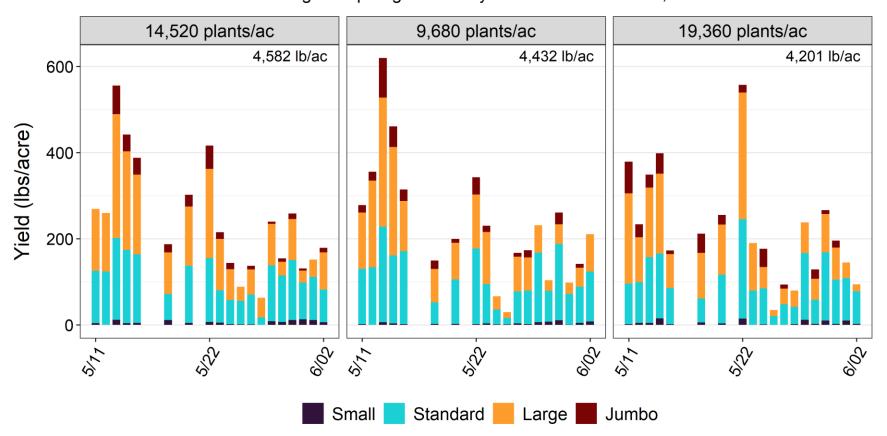
The trial was established in 2017 with 1 year old crowns of Guelph Eclipse planted on 13 May, 2017. The crowns are spaced 6, 9 or 12 inches apart in 54" rows. Each plot is 25" feet long. Plots with plant spacing of 6" apart consist of 50 crowns, 9" spacing have 33 crowns, and 12" spacing contain 25 crowns per plot. The planting density for the 3 treatments are 19,360, 14,520, and 9,680 crowns per acre, respectively. Fresh weight, spear number and spear size, based on diameter are measured and recorded for each harvest.

Results:

As in previous years, no significant differences in yield or spear diameter were observed across plant populations.

2017B Eclipse Plant Population Trial: 2023 Yield Data									
Michigan Asparagus Industry Research Farm - Hart, MI									
Dopulation		Mean Yie	lds in lb	s./acre		Spear Tip Quality			
Population	Small	Standard	Large	Jumbo	Total	Avg Flowering ¹	Invalid ²		
9,680 plants/ac	67	2117	1900	350	4432	31%	15%		
14,520 plants/ac	113	2015	2129	324	4582	29%	13%		
19,360 plants/ac	93	1895	1840	373	4201	30%	13%		
p Value	0.0674	0.5501	0.4129	0.9357	0.6852	0.2933	0.6429		
LSD.05	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.		


Quantities not significantly different from the maximum in each column shown in bold.


¹ Measured as mean of flowering percentage of individual spears.

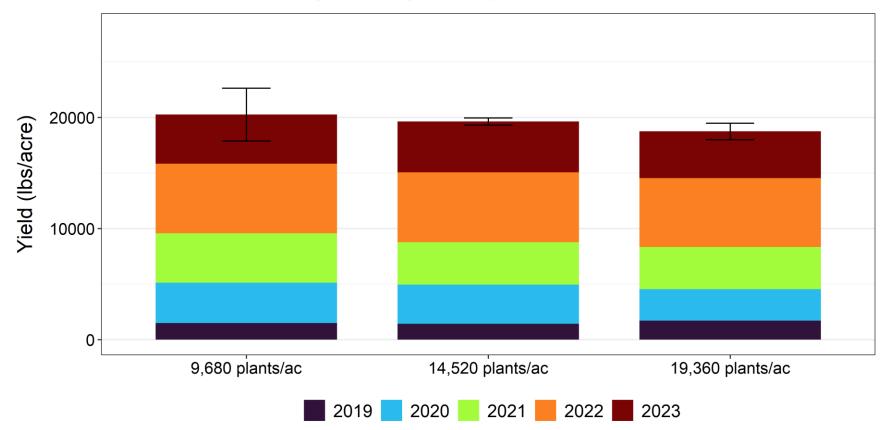
² Measured as percentage of individual spears with invalid flowering readings.

2017B Eclipse Plant Population Trial: 2023 Yield Data

Michigan Asparagus Industry Research Farm - Hart, MI

2017B Eclipse Plant Population Trial: 2023 Yield Distribution Michigan Asparagus Industry Research Farm - Hart, MI

Intentionally Left Blank


Michi	gan Asparag	us Industry	Research I	Farm - Hart	;, MI			
Population	Mean Yields in lbs./acre							
Population	2019	2020	2021	2022	2023	Total		
9,680 plants/ac	1486	3638	4445	6261	4432	20262		
14,520 plants/ac	1425	3514	3825	6292	4582	19638		
19,360 plants/ac	1705	2836	3786	6221	4201	18749		
p Value	0.1822	0.3424	0.3265	0.9946	0.6852	0.7695		
LSD.05	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.		

2017B Eclipse Plant Population Trial: 2023 Cumulative Yields Michigan Asparagus Industry Research Farm - Hart, MI

Quantities not significantly different from the maximum in each column shown in bold.

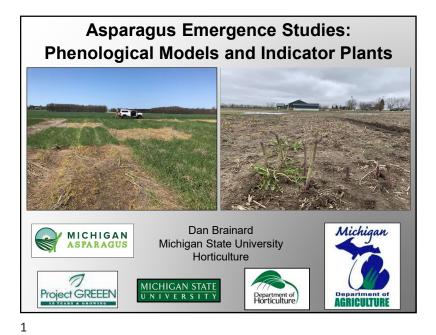
2017B Eclipse Plant Population Trial: 2023 Cumulative Yields

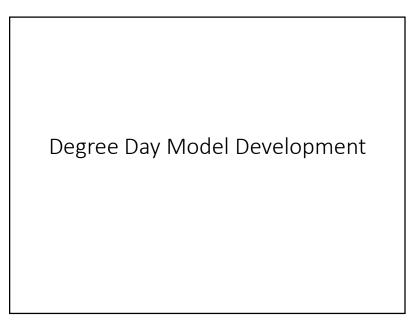
Michigan Asparagus Industry Research Farm - Hart, MI

	Michigan Asparagus Industry Research Farm - Hart, MI						
Month	Av	erage Ten	nperature (F)	Total Precipitation (in)			
Month	2022	2023	30yr Normal	2022	2023	30yr Normal	
January	22.6	30.6	22.9	0.09	1.70	2.75	
February	23.2	29.0	24.1	0.77	1.66	1.96	
March	33.5	33.8	32.4	2.62	3.13	2.37	
April	41.9	46.8	43.8	3.37	2.26	3.63	
May	58.7	56.3	54.8	2.50	1.22	4.45	
June	64.0	64.9	64.8	1.95	1.71	3.72	
July	70.2	69.4	68.8	5.13	3.02	3.53	
August	68.5	66.7	67.6	6.29	3.16	3.27	
September	61.4	63.8	60.8	2.23	0.81	3.23	
October	49.2	50.9	49.0	5.36	4.95	3.96	
November	40.8	38.5	37.7	2.52	2.03	3.43	
December	28.8	37.5	28.4	1.00	1.56	2.60	

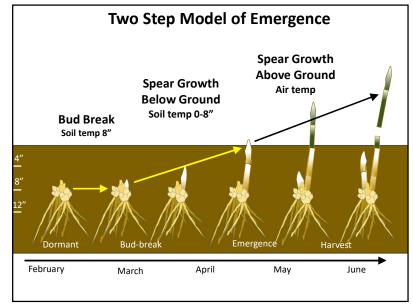
2023 Weather and Climate Data Michigan Asparagus Industry Research Farm - Hart, MI

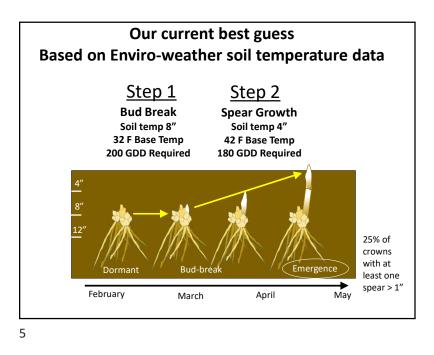
Daily weather data from ARF Enviroweather Station. NOAA climate normals 1991-2020 from Hart 3 WSW Station.

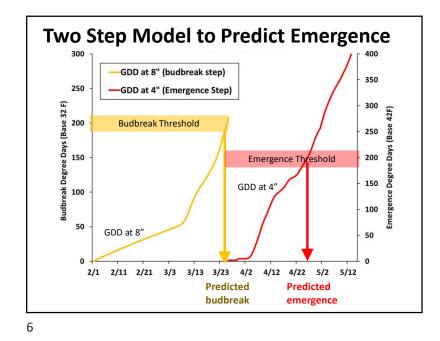

MSU Enviroweather sensors do not measure frozen precipitation, affecting accuracy of precipitation totals during winter months.

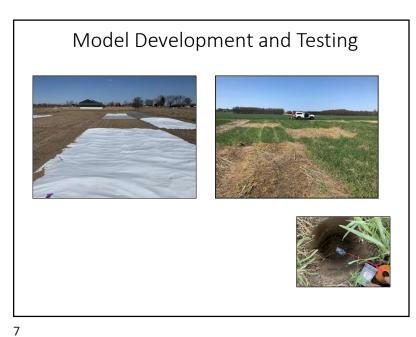

Asparagus Emergence Studies: Phenological Models and Indicator Plants

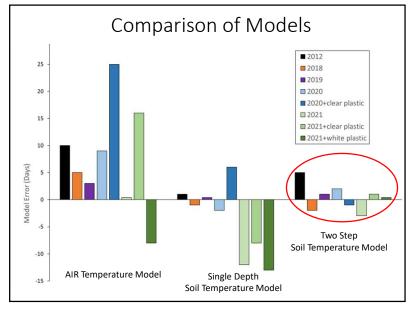
Dan Brainard, MSU Department of Horticulture & MSU Extension

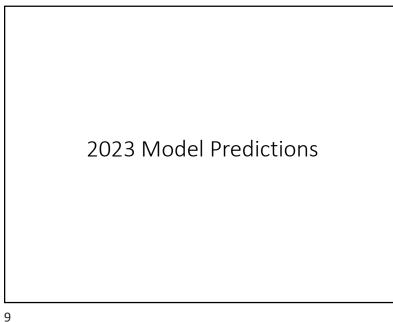

Research Takeaways

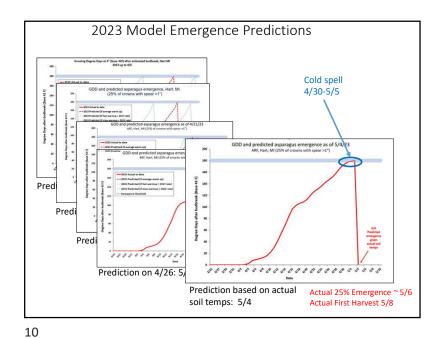

- Growing Degree Day (GDD) models based on Enviro-weather soil temperature data provide reasonable estimates of when asparagus will emerge in the spring and may help growers make more informed marketing and labor management decisions.
- Although useful, predictions of asparagus emergence based on Enviro-weather data are limited by variations between fields in soil type, slope aspect (south vs north facing), crown depth (shallow vs deep), groundcover management (rye cover crop vs bare soil) and asparagus variety.
- Newly funded research will explore whether the timing of emergence or flowering of "Indicator Plants" that are present in or around asparagus fields can provide a low-cost alternative to sensor-based systems for predicting asparagus emergence in specific grower fields.

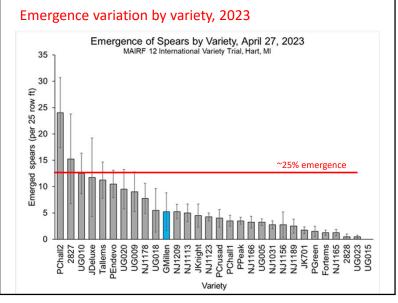


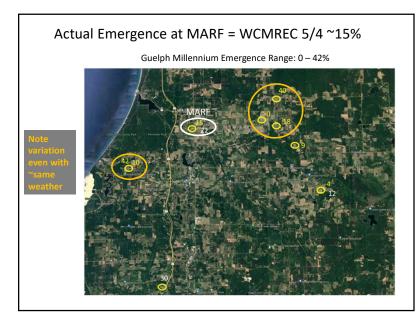



<section-header><text><text><text><text><text><text><text>

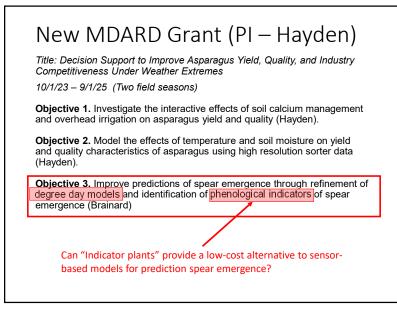


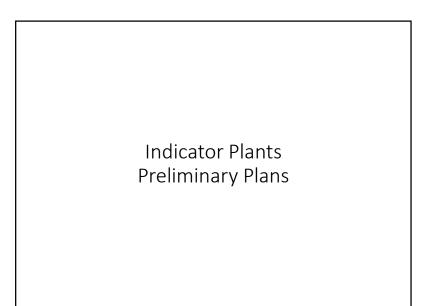


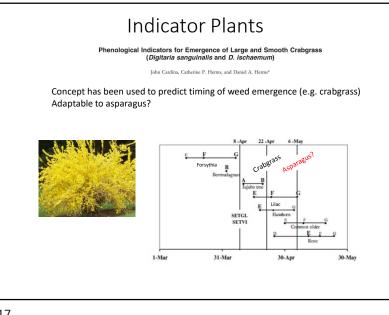


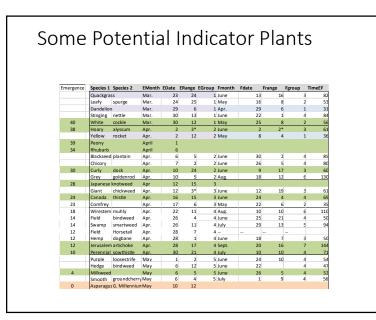


					Pe	rcentage of	buds (n=10)) with
			Mean	Mean		spears	spears	
			bud	bud	bud	<4" from	<2" from	spears
Farm	~Loc	Variety	depth (in)	length (in)		surface	surface	emerged
MARF	Hart	Mill.	6.4	1.3	100	20	0	0
Dome	Crystal Vall	Mill.	5.3	1.9	100	70	30	5
MARF	Hart	Sequoia	5.1	2.6	90	90	30	10
Vana	Elbridge	Eclipse	6.2	2.8	100	50	20	5

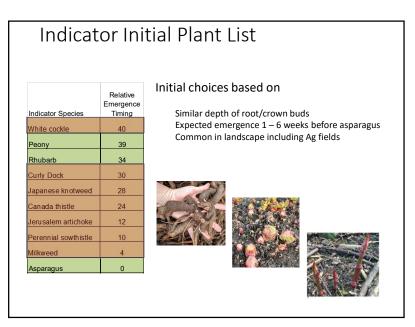


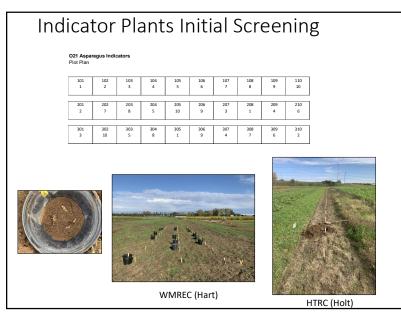



Why variation in emergence?


- Temperature variation between fields
 - Slope (south vs north facing)
 - Soil type and moisture (light vs heavy)
 - Ground cover (rye or none)
- Depth of crown
- Asparagus variety or age
- Non-temperature effects?
 - Impacts of fall temperatures on dormancy?
 - Drought; disease?

14





	Indicator I	Plants			
	Phenological Indicators for Emergen (Digitaria sanguinalis)		rabgrass		
	John Cardina, Catherine P. Herms, and Daniel A. Herms*				
PJM rhododendron	Rhododendron L. 'H-1 P.J.M'	First bloom	April 16	155	
Smooth crabgrass	Bare	First emergence	April 17	178	
Saucer magnolia	Magnolia × soulangiana SoulBod.	Full bloom	April 18	184	
Allegheny serviceberry	Amelanchier laevis Medik.	Full bloom	April 18	187	
Bradford Callery pear	Pyrus calleryana Decne. 'Bradford'	Full bloom	April 19	189	
Eastern redbud	Cercis canadensis	First bloom	April 20	192	
PJM rhododendron	Rhododendron L. 'H-1 P.J.M.'	Full bloom	April 20	201	
Large crabgrass	Lawn	First emergence	April 24	211	
Snowdrift crabapple	Malus L. 'Snowdrift'	First bloom	April 21	213	
Common lilac	Syringa vulgaris L.	First bloom	April 24	231	
Ohio buckeye	Aesculus glabra Willd.	First bloom	April 25	241	
Wayfaringtree viburnum	Viburnum lantana L.	First bloom	April 28	251	
Persian lilac	Syringa × persica L.	First bloom	April 29	261	
Smooth crabgrass	Lawn	25% emergence	April 28	263	
Common horsechestnut	Aesculus hippocastanum L.	First bloom	April 30	264	
Snowdrift crabapple	Malus L. 'Snowdrift'	Full bloom	May 1	268	
Tatarian honeysuckle	Lonicera tatarica L.	First bloom	April 29	270	
Eastern redbud	Cercis canadensis L.	Full bloom	April 30	277	
Smooth crabgrass	Bare	25% emergence	May 1	284	
Flowering dogwood	Cornus florida L.	First bloom	May 4	293	
Large crabgrass	Bare	First emergence	May2-	306	
Acparague 2 num	Viburnum lantana L.	Full bloom	May 6	310	
Asparagus ?	Syringa vulgaris L.	Full bloom	May 7	331	
Winter king hawthorn	Crataegus viridis L.	First bloom	May 8	344	
Smooth crabgrass	Bare	50% emergence	May 9	347	
Smooth crabgrass	Lawn	50% emergence	May 7	354	
Vanhoutte spirea	Spiraea × vanhouttei (Briot) Carr.	First bloom	May 9	367	
Black cherry	Prunus serotina Ehrh.	First bloom	May 11	372	
Ohio buckeye	Aesculus glabra Willd.	Full bloom	May 11	384	

Asparagus Emergence Studies Take Home Messages

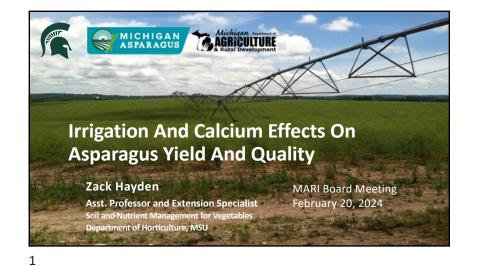
Growing Degree Day (GDD) models based on Enviro-weather soil temperature data provide reasonable estimates of when asparagus will emerge in the spring and may help growers make more informed marketing and labor management decisions.

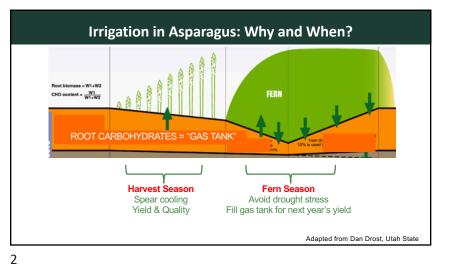
Although useful, predictions of asparagus emergence based on Enviroweather data are limited by variations between fields in soil type, slope aspect (south vs north facing), crown depth (shallow vs deep), groundcover management (rye cover crop vs bare soil) and asparagus variety.

Newly funded research will explore whether the timing of emergence or flowering of "Indicator Plants" that are present in or around asparagus fields can provide a low-cost alternative to sensor-based systems for predicting asparagus emergence in specific grower fields.

Indicator Plant Evaluation

- Monitor emergence timing relative to asparagus
- Evaluate consistency of relative emergence timing across variable growing environments
- Compare predictive value relative to sensor-based models


Intentionally Left Blank


Irrigation and Calcium Effects On Asparagus Yield and Quality

Zack Hayden, MSU Department of Horticulture & MSU Extension

Research Takeaways

- During the hot/dry conditions of 2023, harvest-season irrigation cooled the spear environment, but with limited detection of tip quality improvements.
- Availability of irrigation improved weed control following the dry harvest season.
- Fern-season irrigation increased stem density and resulted in earlier and more consistent stem flushes over the summer.
- Gypsum increased fern concentration of specific nutrients, particularly Sulfur.

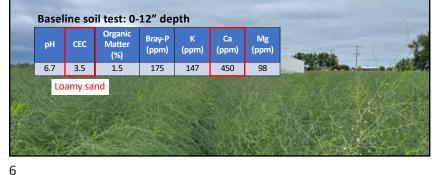
Calcium (Ca) Deficiency Symptoms in Asparagus

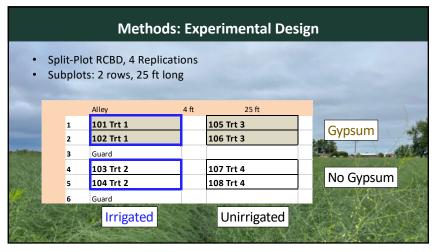
Essential plant nutrient, involved in cell wall structure and integrity

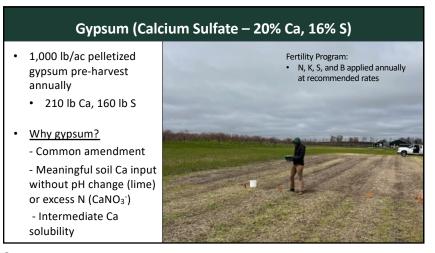
- Downward curling of tips of young shoots
- Bieback of newly formed shoots
- Shortened storage roots

Carmen Feller & Anja Müller; Leibniz-Institute of Vegetable and Ornamental Crop: Theodor-Echtermeyer-Weg 1, D 14979 Großbeeren, Germany

Calcium (Ca) in the Asparagus – Soil System


- Most MI soils contain "adequate" Ca (>300-400 ppm), sandy soils more likely to be low
- Interactions with other nutrients
- Ca is an immobile plant nutrient
- Ca disorders and water uptake are closely linked


Calcium x Irrigation Research Questions


- 1) Are there benefits to supplemental <u>Ca fertilization in asparagus?</u>
- 2) Are potential benefits mediated by availability of irrigation?
 - Harvest-season irrigation (spear cooling for yield/quality)
 - Fern-season irrigation (fern productivity for future yields)
- 3) Can we better understand temperature and moisture controls on yield and quality?

Methods: Experiment at Asparagus Research Farm

- Guelph Millennium planted 2019 (1-yr old crowns)
- Experiment started spring 2022

Dr. Younsuk Dong, MSU ABSE

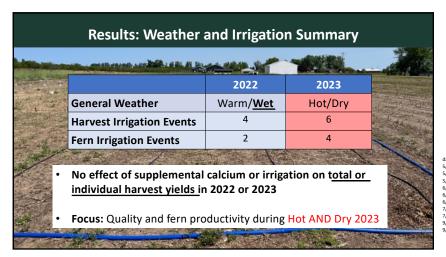
Methods: Data Collection

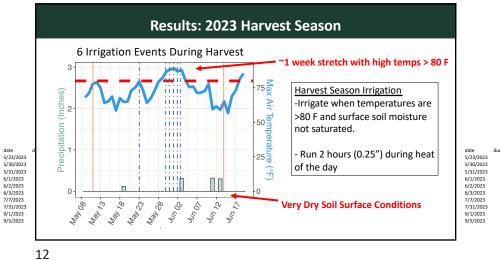
Spear Yield and Quality

- Spear number, weight, length, diameter
- Tip quality (flower factor)

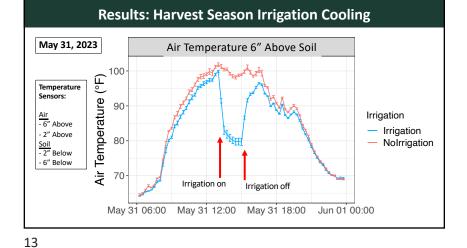
Fern Productivity

- Stem production by category
- Light interception
- Fern tissue nutrient analysis

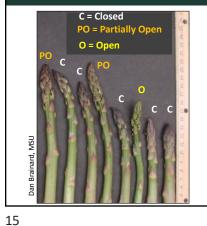

Soil


• Soil nutrient analysis by depth in spring

Environmental

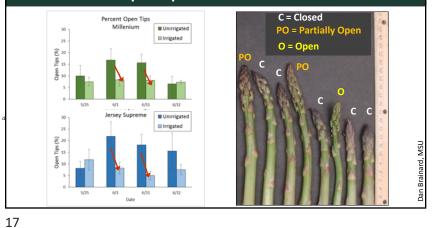

- Soil and air temperature sensors during harvest irrigation
- Soil moisture sensors (4", 8", and 16" depth

10

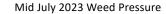


11

Results: Measuring Spear Tip Quality

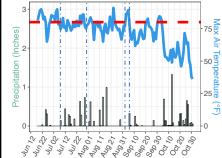


"Flower Factor" Tip Quality Measurement


- 0-100% scale developed for white asparagus
- Green asparagus:
 - Best tip quality ~ 40%
 - Poor tip quality ~ 20%

Percent Open Tips in Previous Research: 2016

Harvest Season Irrigation Improved Weed Control



Irrigated

Not Irrigated

Results: Fern Season Irrigation in 2023

4 Irrigation Events During Fern Growth

Fern Season Irrigation:

- < 50% Available Water to ~16" depth based on sensors
- Irrigate to field capacity (approx. 1")

date 5/23/2023

5/30/2023 5/31/2023

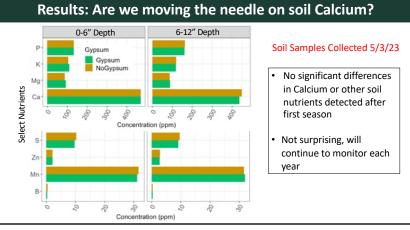
6/1/2023

6/2/2023 6/3/2023

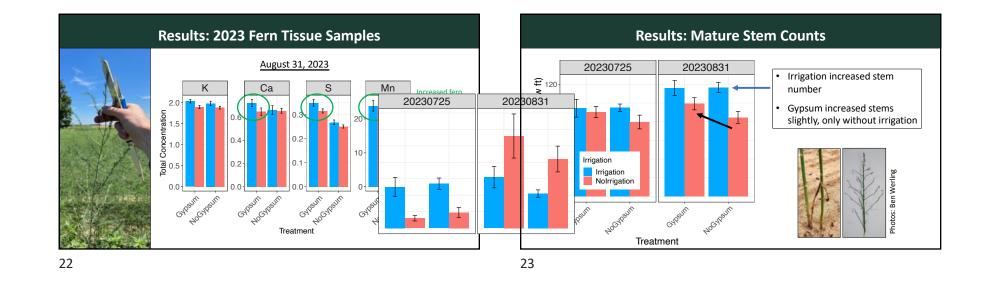
7/7/2023 7/31/2023

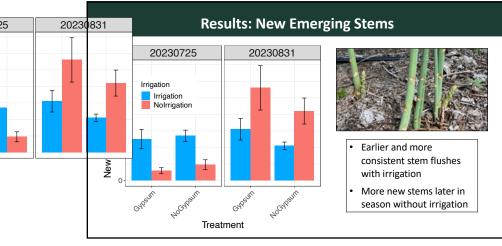
9/1/2023 9/5/2023

2023: Very dry start to fern season


Effects of Irrigation and Gypsum on Fern Productivity?

18


Some Notes on Gypsum


- Gypsum is a source of Calcium and Sulfur
- Gypsum is "intermediately" soluble
- Does not appreciably change soil pH
- Gypsum can act as a soil conditioner to reduce compaction
 - BUT soil structure benefits much less likely on sandy soils with low clay content
- Risks of high rates on sandy soils
 - Excessive Ca can interfere with soil retention and plant uptake of other cations (e.g., Potassium, Magnesium, etc.)

21

19

Summary

Irrigation and Supplemental Calcium Effects during a Hot/Dry 2023:

Harvest-season Effects:

• Irrigation provided cooling, but limited detection of tip quality improvements

Fern-season Effects:

- Irrigation increased stem density and weed control
- Gypsum: Changes to fern nutrient uptake, modest • evidence of irrigation-dependent effects on stem density.

Impact on Yields? Stay tuned for 2024 harvest.

Intentionally Left Blank

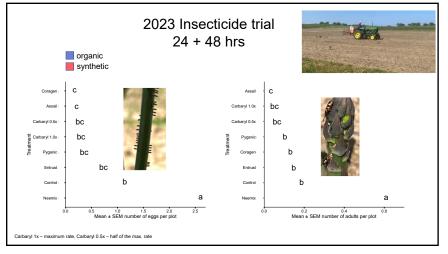
Asparagus Beetle Biology and Management

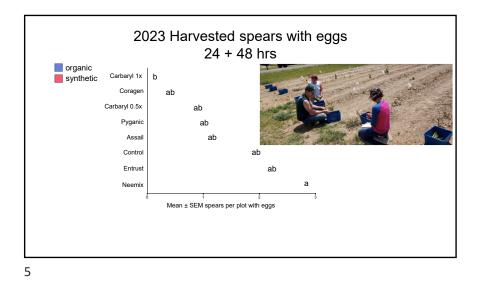
Zofia Szendrei, MSU Department of Entomology & MSU Extension Laura Marmolego, M.S. Student, MSU Department of Entomology

Research Takeaways

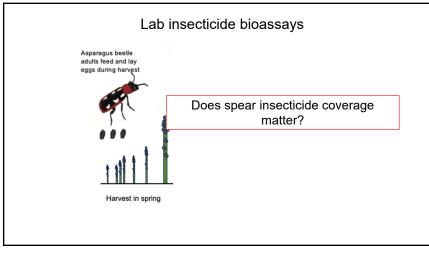
- Among the currently registered insecticides for asparagus beetle control during harvest, Carbaryl and Assail are the most effective for conventional insecticide options and Pyganic is most effective for organic management. Coragen seemed promising for suppressing egg numbers.
- Insecticide covering only the tip of the spears is as effective as insecticide covering entire spear likely because beetles use the spear tip as an important place to lay their eggs so they contact the insecticide at the spear tip when they lay eggs.
- Asparagus beetles can evaluate spear characteristics and are selective when choosing where to lay their eggs. This behavioral characteristic could be exploited in management and plant breeding in the future.

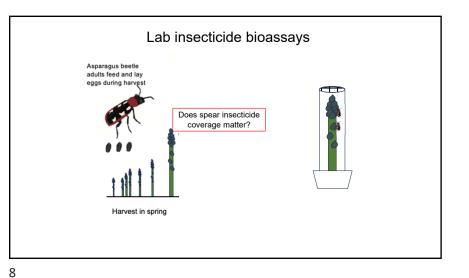
2023 Insecticide trials

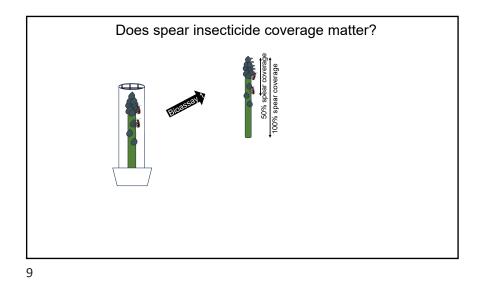

- Conventional & Organic
- 24h PHI
- No enclosures
- Counted # of beetles and # of eggs on each plant

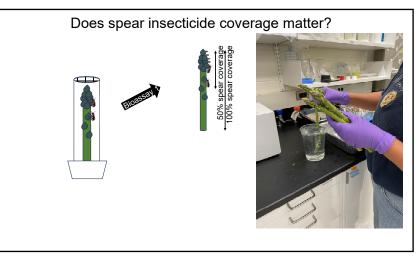

Photos: J. Roedel

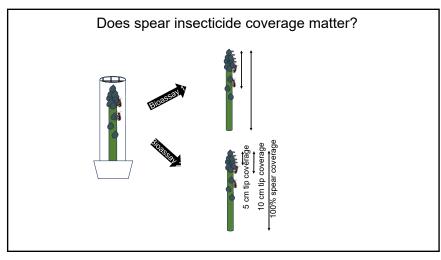
2

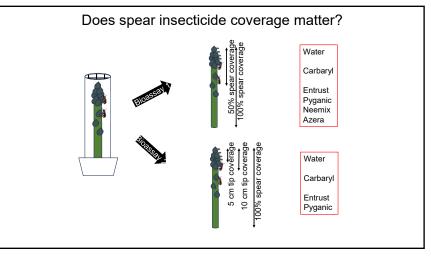

Name	Company	Туре	Active ingredient	Class	Rate (oz. per acre)
Assail (granular)	Corteva	Synthetic	acetamiprid	neonicotinoid	1.1 -2.3
Carbaryl (1X)	Loveland	Synthetic	carbaryl	carbamate	32
Carbaryl (0.5X)	Loveland	Synthetic	carbaryl	carbamate	16
Coragen	FMC	Synthetic	chlorantraniliprole	anthranilic diamide	3.5 -7.5
Neemix	Certis	Organic	azadirachtin		4-16 (10)
Pyganic	MGK	Organic	pyrethrin	pyrethrin	16- 59
Entrust	Corteva	Organic	spinosad	spinosyn	1.25 -2
Azera	MGK	Organic	azadirachtin+ pyrethrin		16- 32

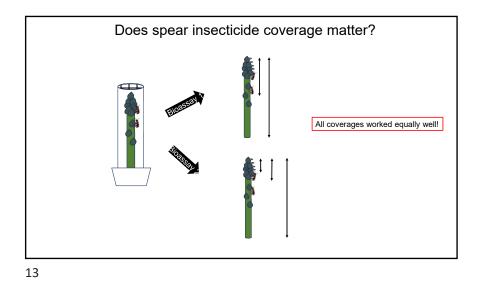


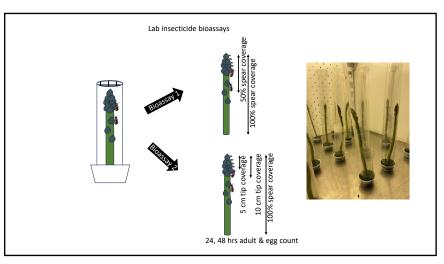

4

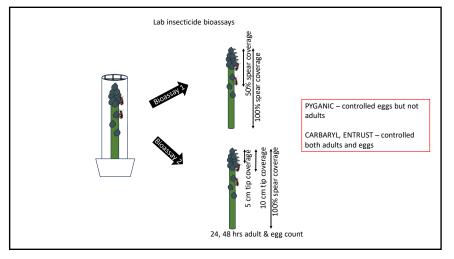


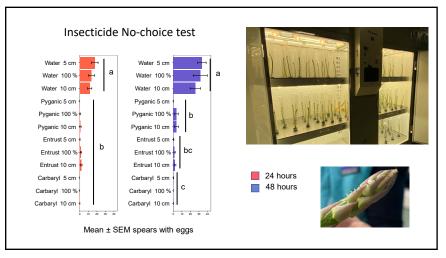


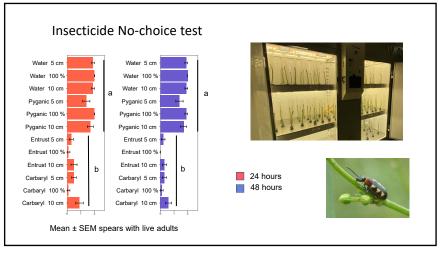


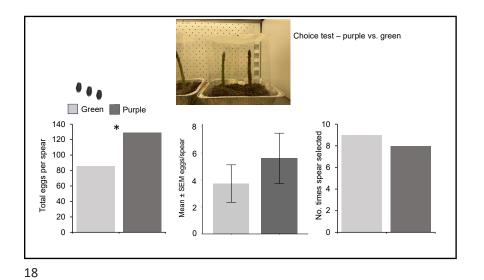


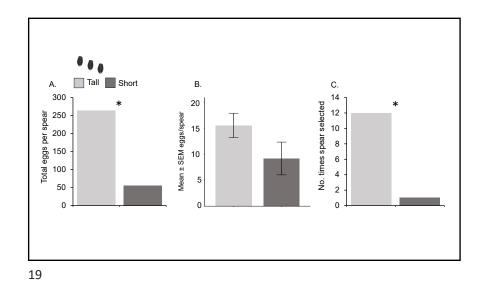


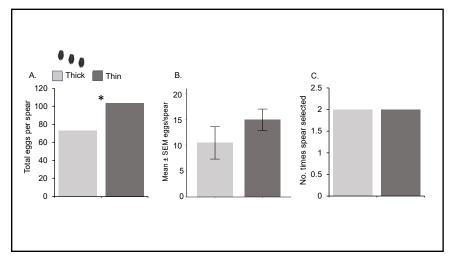


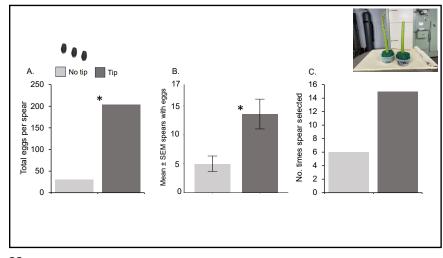


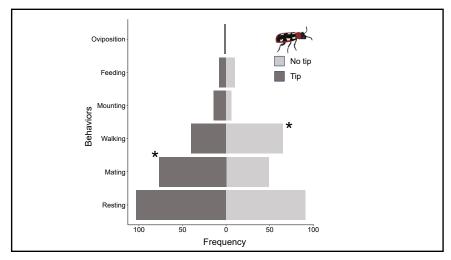


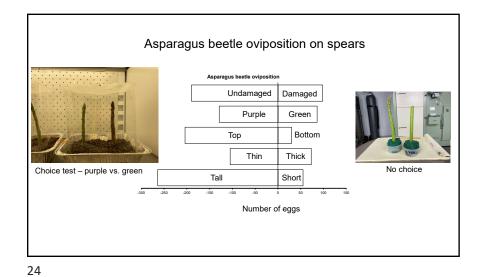


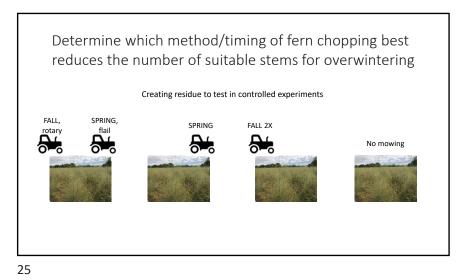


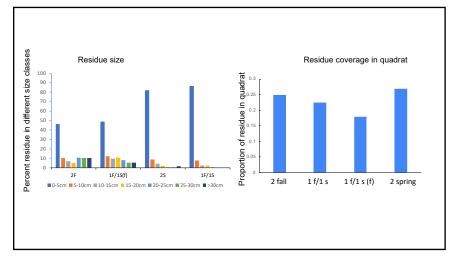












Acknowledgements A special thanks to: • Members of the Szendrei lab • Ben Werling • John Bakker • Michigan Asparagus Advisory Board • MSU Extension • Project GREEEN • All the participating asparagus growers

Asparagus Processors, Fresh Packers and Shippers Research Contributors

Shafer Lake Fruit Hartford, MI

Ron Richter Farms Decatur, MI

MICHIGAN ASPARAGUS RESEARCH FARM 5047 N Oceana Drive • Hart, MI 49420